
Towards Data Discovery by Example

El Kindi Rezig1, Allan Vanterpool1,2, Vijay Gadepally3,
Benjamin Price3, Michael Cafarella1, and Michael Stonebraker1

1 MIT
{elkindi, michjc, stonebraker}@csail.mit.edu

2 United States Air Force
{allan.vanterpool@us.af.mil}

3 MIT Lincoln Laboratory
{vijayg,ben.price}@ll.mit.edu

Abstract. Data scientists today have to query an avalanche of multi-
source data (e.g., data lakes, company databases) for diverse analytical
tasks. Data discovery is labor-intensive as users have to find the right
tables, and the combination thereof to answer their queries. Data discov-
ery systems automatically find and link (e.g., joins) tables across various
sources to aid users in finding the data they need. In this paper, we
outline our ongoing efforts to build a data discovery by example system,
DICE, that iteratively searches for new tables guided by user-provided
data examples. Additionally, DICE asks users to validate results to im-
prove the discovery process over multiple iterations.

Keywords: Data Preparation · Data discovery · Data integration · Data
cleaning

1 Introduction

Developing an end-to-end analytic pipeline consists of a number of different oper-
ations on the data. One component that is widely recognized as a bottleneck for
data scientists, is the time spent discovering and preparing the data needed for
their analyses [8, 9]. A key step in prepartion is finding and linking the relevant
datasets one would need for the task at hand, which when performed manually
tends to be both onerous and error-prone [2].

Due to the importance of data discovery, there have been several recent
efforts to facilitate it [2, 3, 6]. Aurum[2] exposes a query API for users to query a
graph representation of the data, which captures column similarity and PK-FK
relationships. However, the burden is still on the user to write the code to discover
and collect the relevant data. In another approach, DoD[4] asks users to provide
a schema of the view they are looking for, and the system attempts to find the
required joins necessary to produce it. Auto-Join [11] performs transformations
on data columns to make them match other key columns and hence make them
joinable. However, Auto-Join does not deal with querying the produced data.

Consider the tables in Figure 1. Suppose we have the following query Q1:
“Get me the list of papers co-authored by DB faculty at CSAIL and non-CSAIL



2 E.K. Rezig et al.

faculty_info table faculty_affiliations table

dblp_entries table dblp_authors table

fid

(Author)

aidpid

fid First Name Last Name

1 Samuel Madden

2 Michael Stonebraker

fid Author Lab

1 Samuel Madden Databases

2 Michael Stonebraker Databases

aid Author Affiliation

1 Samuel Madden CSAIL

2 Mourad Ouzzani QCRI

3 Nan Tang QCRI

4 Michael Stonebraker CSAIL

5 Raul Fernandez U. Chicago

aid pid

1 1

2 1

3 1

4 1

5 1

Title pid
Dataset-On-Demand: Automatic 
View Search and Presentation for 

Data Discovery

1

Authors Paper Affiliation

Sam 
Madden

Dataset-On-Demand: Automatic View Search and 
Presentation for Data Discovery

CSAIL

Mourad 
Ouzzani

Dataset-On-Demand: Automatic View Search and 
Presentation for Data Discovery

QCRI

EX1:

Fig. 1. Example PK-FK join path across different tables

authors”. If the user knows every table in the data lake, then, it’s straightforward
to write a SQL query to answer the query. However, the number of tables in
data lakes can be unbounded, which renders manual inspection impractical. A
data discovery system that can aid in finding the PK-FK join paths (arrows in
Figure 1) makes it easier for a user to know which tables join to what others, and
then the user can write queries on top of that pre-processed data. However, the
user still needs to write the queries, which in many cases can be time-consuming
and cumbersome (i.e., the user does not know all the tables, and the relationships
thereof), based on the level of depth and complexity of those relationships.

We are working on DICE (Data Discovery by Example), a system that
enables data discovery by example, wherein the user provides a set of desired
records as examples, and the system then automatically fetches the relevant
tables/columns, which would require doing joins between columns of different
tables. For instance, to express Q1, the user could provide two example records
of the desired output (EX1 in Figure 1) from which DICE extracts values and
properties (e.g., DICE would notice that the values in affiliation can be different
in EX1) to look up relevant tables in the data lake, and then construct join paths.
The lookup function in DICE supports both exact and similarity matching.

From our ongoing engagement with one large organization, we have learned
that being able to search data by example would be a highly desirable improve-
ment for data analysts, as opposed to their current method of writing queries
which requires explicit knowledge of the underlying data organization.



Towards Data Discovery by Example 3

Lookup example 
values

Lake

Extract matching 
columns

Generate candidate 
PK-FK relationships

Build example 
recordsPrune and validate

Result 
satisfactory

Return 
discovered 
tables

Search for 
new tablesNo

Yes

Example 
records

Fig. 2. General workflow of DICE

2 System Overview

Figure 2 outlines the overall workflow of DICE. In a nutshell, DICE does not
perform data discovery in one shot, but instead is an interactive system. DICE
interacts with the user in two ways: (1) by requesting example records; and
(2) by asking them to validate constructed join paths. After each iteration the
user can decide to either stop the search, or prompt DICE to look for more
candidate tables and join paths.

As mentioned above, the first step is for the user to provide a table (see
EX1 in Figure 1) as input containing a set of example records. After extracting
the values and properties from the example, DICE fetches relevant tables from
the data lake. DICE then attempts to construct PK-FK relationships from the
columns of the extracted tables. DICE then constructs sample records from the
selected join paths, presents them to the user and based on the user’s (Yes/No)
feedback on each record, fetches more tables or stops the search if the user is
satisfied with the results. The user may also supply additional examples after
each iteration. Given this design we note the following challenges:

– Extracting the values/properties from the user’s example records:
Interpreting example records can be ambiguous. For instance, in Figure 1,
the example EX1 could mean: “get me all papers co-authored by DB CSAIL
faculty and non-CSAIL authors” or “get me all papers written by anybody
in Databases” or “get me all papers co-authored by Samuel Madden and



4 E.K. Rezig et al.

Mourad Ouzzani”. Therefore, primitives are needed so the user can express
their “intent” over the provided examples.

– Initial search region: Initially, DICE has to fetch a set of tables, and
try to link them together. If too many tables match the user’s examples,
choosing the correct subset of tables for the user to consider first, can be
challenging. The initial search region (first tables to consider in the lake) is
key because DICE builds on it for its subsequent searches by expanding it
to include more tables.

– Minimizing the user’s input: DICE needs to actively involve the user
by selecting “interesting” and relevant records for validation. Additionally,
DICE will need to be able to ask the user for more examples if the current
examples are too broad or limited for the search. It is crucial to minimize
the user’s interactions while attempting to maximize the value of the user’s
feedback, when needed.

2.1 Knowledge Graphs

In addition to the relational data model, we are also looking into how DICE
could be used in other data models. For instance, a knowledge graph encodes en-
tities (nodes) and the properties that connect them (edges). In this case, DICE
is not looking for PK-FK relationships, but for any relationship between nodes
in the graph (paths). This makes the problem more challenging because DICE
has to select only relevant paths to consider (which would require a measure of
interestingness attributed to different paths). Once determined, DICE can then
build records from those paths to present samples to the user.

3 Benefits of DICE

Using a discovery tool such as DICE, can provide users with a number of ben-
efits:

– Simplifying data discovery: By allowing users to specify examples of the
data output they would like, DICE greatly reduces the number of iterations
between the user and system. The user helps define the high-level data dis-
covery task and the system provides viable alternative outputs for the user
to choose between, allowing for a quick narrow-down to the most relevant
alternative.

– Improving data aggregate sensitivity: In many computing environ-
ments, while individual records may not present concerns, aggregation of
different types of data can lead to policy or security violations. For example,
integration of different non-sensitive datasets may lead to sensitive outputs.
Consider a medical scenario in which a user is trying to integrate data from
Table 1 and Table 2. Suppose Table 1 consists of columns (PatientID, Pa-
tient Name, Patient Gender) and Table 2 consists of columns (PatientID,
Patient Date of Birth, Patient Age). If a researcher is interested in looking



Towards Data Discovery by Example 5

at the distribution of gender and age within the datasets, they may attempt
to do a “join” on Table 1 and Table 2 using the PatientID. Very often,
combining Patient Name and Date of Birth can lead to sensitive Personally
Identifiable Information (PII). Using a tool like DICE, the user could spec-
ify a priori that they are looking only for (Gender, Age) and DICE can
filter data appropriately before aggregating.

– Improved policy compliance: In many environments, data is distributed
across different systems with different owners. These data owners may not
wish to provide unfettered access to traditional data discovery tools. In
which case, they could expose only a subset of their data or metadata about
their system. DICE could use this limited information to construct “safely”
pruned datasets for the data scientist. If any of these are of interest, the data
scientist can then reach out to data owners for greater access.

– Working well within polystore or multistore environments: Data
distributed across heterogeneous systems, as seen in polystores [5] and multi-
store environments [10], pose new challenges for data discovery. A tool such
as DICE would improve data integration across these heterogeneous sys-
tems. For example, the applications described in [7, 1], leverage data stored
in disparate data management systems. For a data scientist to find data of
interest, they must manually query each individual system (or write a poly-
store query that speaks to multiple, different backend systems). In this case
as well, DICE could create these queries for the data scientist in order to
help them find the specific data products of interest.

4 Conclusion

DICE is an interactive, user-in-the-loop, data discovery by example system. In
this paper we presented a quick walkthrough of the workflow of DICE as well as
the challenges associated with its implementation. We are currently working with
one large-scale organization to implement DICE on their data lake, but believe
that DICE may have widespread value and application to other organizations
as data storage continues to grow in both complexity and distribution.

Acknowledgement

Research was sponsored by the United States Air Force Research Laboratory
and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.
The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the United States Air Force or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation herein.



6 E.K. Rezig et al.

References

1. Elmore, A.J., Duggan, J., Stonebraker, M., Balazinska, M., Cetintemel, U., Gade-
pally, V., Heer, J., Howe, B., Kepner, J., Kraska, T., et al.: A demonstration of
the bigdawg polystore system. Proceedings of the VLDB Endowment 8(12), 1908
(2015)

2. Fernandez, R.C., Abedjan, Z., Koko, F., Yuan, G., Madden, S., Stonebraker,
M.: Aurum: A data discovery system. In: 34th IEEE International Conference
on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. pp. 1001–
1012. IEEE Computer Society (2018). https://doi.org/10.1109/ICDE.2018.00094,
https://doi.org/10.1109/ICDE.2018.00094

3. Fernandez, R.C., Mansour, E., Qahtan, A.A., Elmagarmid, A.K., Ilyas,
I.F., Madden, S., Ouzzani, M., Stonebraker, M., Tang, N.: Seep-
ing semantics: Linking datasets using word embeddings for data dis-
covery. In: 34th IEEE International Conference on Data Engineer-
ing, ICDE 2018, Paris, France, April 16-19, 2018. pp. 989–1000. IEEE
Computer Society (2018). https://doi.org/10.1109/ICDE.2018.00093,
https://doi.org/10.1109/ICDE.2018.00093

4. Fernandez, R.C., Tang, N., Ouzzani, M., Stonebraker, M., Madden, S.: Dataset-
on-demand: Automatic view search and presentation for data discovery. CoRR
abs/1911.11876 (2019), http://arxiv.org/abs/1911.11876

5. Gadepally, V., Chen, P., Duggan, J., Elmore, A., Haynes, B., Kepner, J., Madden,
S., Mattson, T., Stonebraker, M.: The bigdawg polystore system and architecture.
In: 2016 IEEE High Performance Extreme Computing Conference (HPEC). pp. 1–
6. IEEE (2016)

6. Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang,
S.E.: Goods: Organizing google’s datasets. In: Özcan, F., Koutrika, G., Mad-
den, S. (eds.) Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016. pp. 795–806. ACM (2016). https://doi.org/10.1145/2882903.2903730,
https://doi.org/10.1145/2882903.2903730

7. Mattson, T., Gadepally, V., She, Z., Dziedzic, A., Parkhurst, J.: Demonstrating
the bigdawg polystore system for ocean metagenomics analysis. In: CIDR (2017)

8. Rezig, E.K., Cao, L., Stonebraker, M., Simonini, G., Tao, W., Mad-
den, S., Ouzzani, M., Tang, N., Elmagarmid, A.K.: Data civilizer
2.0: A holistic framework for data preparation and analytics. PVLDB
12(12), 1954–1957 (2019). https://doi.org/10.14778/3352063.3352108,
http://www.vldb.org/pvldb/vol12/p1954-rezig.pdf

9. Rezig, E., Cafarella, M., Gadepally, V.: Technical report: An overview of data
integration and preparation (2020)

10. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: A survey. In: 2017 IEEE International Confer-
ence on Big Data (Big Data). pp. 3211–3220. IEEE (2017)

11. Zhu, E., He, Y., Chaudhuri, S.: Auto-join: Joining tables
by leveraging transformations. Proc. VLDB Endow. 10(10),
1034–1045 (2017). https://doi.org/10.14778/3115404.3115409,
http://www.vldb.org/pvldb/vol10/p1034-he.pdf


