
U-MAP: A System for Usage-Based Schema Matching and
Mapping∗

Hazem Elmeleegy
†

AT&T Labs - Research
Florham Park, NJ 07932, USA
hazem@research.att.com

Jaewoo Lee, El Kindi
Rezig, Mourad Ouzzani

Purdue University
West Lafayette, IN

lee748@purdue.edu
erezig@purdue.edu
mourad@purdue.edu

Ahmed Elmagarmid
Qatar Computing Research
Institute - Qatar Foundation

Doha, Qatar
aelmagarmid@qf.org.qa

ABSTRACT
This demo shows how usage information buried in query
logs can play a central role in data integration and data
exchange. More specifically, our system U-Map uses query
logs to generate correspondences between the attributes of
two different schemas and the complex mapping rules to
transform and restructure data records from one of these
schemas to another. We introduce several novel features
showing the benefit of incorporating query log analysis into
these key components of data integration and data exchange
systems.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases

General Terms
Algorithms, Design

Keywords
Schema mapping, schema matching, query logs

1. INTRODUCTION
Schema matching and schema mapping are essential steps

in data integration and data exchange. Schema matching
generates correspondences between attributes found in two
different schemas. Schema mapping discovers more complex
transformation rules, or mappings, that enable transforming
and restructuring data records from one schema to another.
Given the significance of the problem, a large body of liter-
ature has been devoted to address these two issues. This is
evident by the surveys in [6] and [7] on schema matching, and
the several systems developed for schema mappings (e.g., [1,
4, 2]).

∗This research was supported by QCRI, and by NSF Grant
Numbers IIS 0916614 and IIS 0811954, and by the Purdue
Cyber Center.
†This work was mostly done while this author was at Purdue
University.

Copyright is held by the author/owner(s).
SIGMOD’11, June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

We demo U-Map, a system that leverages the usage infor-
mation found in query logs to generate attribute correspon-
dences using the technique described in [3] and to solve some
of the hard-yet-common challenges [2] facing any schema
mapping tool, such as Clio [4]. We illustrate these challenges
through an example from the bookstores domain (Figure 1).

The first issue is that the level of similarity between the
source and target schemas may be low, in the sense that the
schema structures and the attribute names are quite differ-
ent. The attribute names in Figure 1 are shown to be sim-
ilar across the two schemas only for ease of interpretation.
Even the data values associated with the schemas may not
be available in the target. This will make it very difficult
for existing schema matching tools to discover the correct
attribute correspondences.

The second issue is that current schema mapping tools
are unable to determine IS-A relationships. More specifi-
cally, when the schema has two relations that are subclasses
of a higher super class relation, and those two relations hap-
pen to be overlapping (i.e., some of their entities are shared),
then we will need to merge these relations in a way that also
merges the records of their shared entities. This is impor-
tant so that we do not have duplicate records in the tar-
get database. For example, in the X-Schema, two relations
X Customer and X Distributor refer to the same higher con-
cept (Buyer for example). Following traditional algorithms,
each of these relations would be mapped independently to
the relation Y Customer resulting in data duplication be-
cause records in X Customer and X Distributor may refer
to the same real-world entity.

The third issue stems form some limitations in the clas-
sical chase algorithm, which is used to find associations, or
logical relations. Since this algorithm only relies on chasing
foreign keys in the forward direction, it might miss some
interesting associations as we show in Section 2.

The fourth issue is that some mappings might map multi-
ple attributes from the source schema to one attribute in the
target schema, or vice versa. For example, in the X-Schema,
the X Order Line relation references the X Address relation
more than once; once for the shipping address and once
for the billing address. As a result, the logical relation for
X Order Line would include the X Address attributes more
than once. Likewise, the logical relation for Y Order Line
would include the address attributes more than once (billing
address, shipping address and customer address). Since we

1287



Figure 1: Schemas of two bookstores.

have more than one version for each address attribute in
both logical relations, the question is: what is the correct
way of mapping them?
In U-Map, we take advantage of the query logs to address

all of the above issues. In the following section, we will
give an overview of the main features of the U-Map system,
showing how the processes of schema matching and schema
mapping can benefit from the usage information in the query
logs. In Section 3, we describe our demonstration scenario.

2. SYSTEM DESCRIPTION
U-Map has two main steps: Correpondences generation

and mappings generation, this latter in turn includes three
key steps steps. These steps are explained in the following
subsections.

2.1 Correspondences Generation
Our usage-based schema matching approach operates in

two main phases. It begins with a feature extraction phase,
where features characterizing the usage of attributes in each
schema are extracted from their respective query logs. We
consider structure-level features, which reflect relationships
across attributes in terms of their usage, and also element-
level features, which characterize each attribute in isolation
from other attributes.
The second phase is the matching phase, where attribute

correspondences are generated. For each possible set of cor-
respondences, we compute a scoring function, which reflects
the level of similarity between the extracted features on both
sides when the given correspondences are applied [3].

2.2 Mappings Generation
Before describing U-Map’s mapping generation, we ex-

plain how a mapping specifies the transformation of records
across the two schemas in Figure 1. In particular, the fol-

Figure 2: Part of the updated X Schema after merg-

ing the overlapping relations

lowing expression maps every book record along with its
corresponding author record in X-Schema into three different
records in Y-Schema (because of the many-to-many relation-
ship between books and authors in that schema).

m1 for a in X Author, b in X Book
where (a.a id = b.b a id)
⇒ exits a’ in Y Author, b’ in Y Book, ba’ in Y Book Author
where (a’.a id = ba’.ba a id ∧ b’.b id = ba’.ba b id
with ∧ a’.a fname = a.a fname ∧ a’.a lname = a.a lname
∧ b’.b title = b.b title ∧ b’.b pub date = b.b pub date)

The first two clauses in m1, for and where, represent the

source logical relation, which is a join between multiple
source tables (or sometimes just a single table). Similarly,
the second two clauses, exists and where, represent the
target logical relation. Finally, the with clause represents
all the correspondences between the attributes of the source
and target logical relations.
Merging sibling relations: In this step, U-Map looks for
relations that have IS-A relationships with a superclass in
each schema. If the discovered relations are overlapping,
U-Map merges them into one relation, this process is per-
formed if one of these two criteria holds: (a) Two attributes
from different relations in the source schema correspond to
one attribute in the target schema. For example c uname in
X Customer and d uname in X Distributor both correspond
to c uname in Y Customer. (b) Two relations from the same
schema have foreign keys referencing the same relation, this
is an indication that they might have an IS-A relationship
with a superclass. By looking at the the query log, U-Map

determines whether two relations are overlapping or disjoint;
if they are found overlapping, they are merged into one rela-
tion. Figure 2 shows the result of merging X Customer and
X Distributor in X-Schema into X Customer Parent.
Constructing logical relations:U-Map extends the clas-
sical chase algorithm by using the query logs. The basic idea
is that we do not always stop the chase process once there is
no more foreign keys to chase. Instead, U-Map chases the
relations in the opposite direction if the query logs indicate
that these are meaningful relations. For example, when we

1288



Figure 3: The logical relations generated from the

aggressive chase.

start chasing from the Y Order Line relation, we also in-
clude the Y Book Author relation even though no foreign
key is referencing this relation starting from Y Order Line.
This is because the query logs indicated that it is meaningful
to include the Y Book Author relation in the resulting log-
ical relation for Y Order Line, that’s because because users
were interested in joining Y Book which is referenced by
Y Order Line with Y Book Author.
U-Map lists the results of the aggressive chase algorithm

which correspond to the logical relations with the added
semantics extracted from the query logs. The user is given
the possibility to probe these results and find out why they
have been generated. Figure 3 shows part of the logical
relation in U-Map which is the result of chasing from the
source table Y Order Line, the figure also shows queries that
supported the generation of this logical relation. The edge
between b id and ba b id represents the reverse chasing from
Y Order Line that led to including Y Book Author in the
logical relation because the query log of Y Schema showed
that it is meaningful to include this information along with
Y Order Line. An example supporting this observation is
shown at the bottom of Figure 3.

Creating mappings with conflict-resolution: As we
mentioned earlier, the final mappings might not be conflict-
free and multiple attributes in the source schema may corre-
spond to one attribute in the target schema. This is the re-
sult of multiple foreign key references from one same relation
to another relation. In our scenario, the logical relation for
X Order Line would include the attributes of the X Address
relation more than once because there are two foreign keys
referencing the X Address relation (shipping and billing ad-
dresses). Similarly, we have multiple address attributes for
the target relation Y Order Line as highlighted previously.
U-Map uses the query logs to capture the different contexts
of the conflicting attributes and then map the contexts ac-
cordingly. For example, billing address and shipping address
constitute different contexts.

3. DEMONSTRATION SCENARIO
U-Map is equipped with a user-friendly graphical inter-

face. It allows the user to provide all the inputs to the
problem (i.e., schemas, query logs, and possibly correspon-
dences); displays a graphical visualization for key objects
like logical relations and mappings, as well as the schemas
themselves with their correspondences; and also has a text
display area for showing sample queries from the log that
are related to a given logical relation or mapping. U-Map

is also interactive as it allows users to modify the output of
each step before proceeding to the following step. Moreover,
users can configure U-Map by either enabling or disabling
each one of its new features outlined in Section 2.

For attribute correspondences, the user is free to either
provide them directly or request U-Map to generate them
through the usage-based technique. In fact, U-Map can also
generate the correspondences using a standard non-usage-
based technique, which is Similarity Flooding (SF) [5].

The scenario for this demo is based on the bookstores
example. We have prepared three versions of the pair of
schemas shown in Figure 1 (along with their query logs),
where the level of attribute name similarity is either high,
medium, or low. The user will then visually compare the
accuracy of the correspondences generated using each of U-

Map and SF. The benefits of U-Map’s usage-based tech-
nique will become clearer when the attribute name similar-
ity is low. Next, the user will inspect the outputs of each
step of the mapping generation process, once when all the
new features are enabled, and once when they are disabled.
In the latter case, U-Map will behave similarly to the ex-
isting schema mapping tools, which will help in highlighting
the value of U-Map’s new features.

4. REFERENCES
[1] Y. An, A. Borgida, R. J. Miller, and J. Mylopoulos. A

semantic approach to discovering schema mapping
expressions. In ICDE, 2007.

[2] H. Elmeleegy, A. K. Elmagarmid, and J. Lee.
Leveraging query logs for schema mapping generation
in U-Map. In SIGMOD, 2011.

[3] H. Elmeleegy, M. Ouzzani, and A. K. Elmagarmid.
Usage-based schema matching. In 24th International

Conference on Data Engineering, pages 20–29, Cancún,
México, April 2008.

[4] R. Fagin, L. M. Haas, M. Hernandez, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema mapping
creation and data exchange. Conceptual Modeling:

Foundations and Applications, pages 198–236, 2009.

[5] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: a versatile graph matching algorithm. In
ICDE, 2002.

[6] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB J.,
10(4):334–350, 2001.

[7] P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. J. Data Semantics, 4:146–171,
2005.

1289




